
Decoding Lua: Formal Semantics for the Developer and the
Semanticist

Mallku Soldevila1, Beta Ziliani1, Bruno Silvestre2, Daniel Fridlender3 and
Fabio Mascarenhas4

1FAMAF/UNC and CONICET, 2INF/UFG, 3FAMAF/UNC, 4DCC/UFRJ

24 October 2017

8%

Summary

About Lua.

Why do we need a formal semantics of Lua?

The Semantics.

The mechanization.

Future work.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

13%

About Lua

Decoding Lua: Formal Semantics for the Developer and the Semanticist

17%

About Lua

Extension programming language.
- Good data-description facilities.
- Small language, small implementation.
- Should be extensible.
- Clear and simple syntax.
- No need for mechanisms for programming-in-the-large.

Concretely:
- Procedural programming with data-description facilities.

- Features for fast development: dynamic typing, automatic memory
management.

- Metaprogramming mechanisms: modification of values’ behaviour under
special circumstances.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

21%

About Lua

Projects using Lua:
- Heavily used in the video game industry: mobile games, “AAA” games and

game engines.

- Other scriptable software: Adobe Photoshop Lightroom, LuaTex, VLC
media player, Wireshark,...

- Look at www.lua.org/uses.html.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

www.lua.org/uses.html

25%

Why do we need a formalized semantics of Lua?

- Developers of tools for code analysis and
language extensions.

- Lua programmers.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

29%

Why do we need a formalized semantics of Lua?

Developers of tools for code analysis and language extensions

Tools for code analysis:
- Luacheck1

- Lua Inspect2

- More on lua-users.org/wiki/ProgramAnalysis.

Language extensions
- Ravi3

- Typed Lua4

Formal proofs of soundness, strengthen the possibilities of static analysis
(e.g., weak tables).

1https://github.com/mpeterv/luacheck
2http://lua-users.org/wiki/LuaInspect
3http://ravilang.github.io/
4A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy. A formalization of Typed Lua. In DLS

’15, 2015.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

lua-users.org/wiki/ProgramAnalysis
https://github.com/mpeterv/luacheck
http://lua-users.org/wiki/LuaInspect

33%

Why do we need a formalized semantics of Lua?

Lua programmers

From λJS , S5, λπ: it’s plausible to give a formal semantics for real
programming languages, using (mostly) just common mathematical
knowledge.

They even provide a lightweight mechanization.

Developers could benefit from it: concise formal description of the
semantics of the whole language (no core language approach required for
Lua).

The project can be benefited from having people of differente areas testing
it (JSCert).

Decoding Lua: Formal Semantics for the Developer and the Semanticist

38%

Semantics

- The model.

- Semantics of stateless constructions.

- Semantics of state.

- Semantics of programs.

- Built-in services.

- Metatables.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

42%

Semantics

The model

Concepts from small-steps operational semantics and reduction semantics
with evaluation contexts.

- Small-step operational semantics: the execution model of state (to capture
the intuition of the developer).

- Reduction semantics with evaluation contexts: evaluation contexts and
their several applications (easiness of description of context-sensitive
semantics, modularity), environment using substitution function.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

46%

Semantics

Semantics of stateless constructions

syntax

s ::= if e then s else s end | ; | ...

v ::= nil | true | false | ...

e ::= v | e and e | e or e | ...

relations between terms (computations)

v /∈ {nil, false}
if v then s1 else s2 end →s s1

v ∈ {nil, false}
if v then s1 else s2 end →s s2

op ∈ {and, or}
v op e →e δ(op, v , e)

interpretation function

δ(and, v , e) =

{
v if v = false ∨ v = nil
e otherwise

δ(or, v , e) =

{
v if v 6= false ∧ v 6= nil
e otherwise

Decoding Lua: Formal Semantics for the Developer and the Semanticist

50%

Semantics

Semantics of state

syntax

s ::= ... | local x = e in s end | x = e

computations

σ’ = (r , v), σ

σ : local x = v in s end →s σ σ’ : s[x\r]

σ’ = σ[r := v]

σ : r = v →s σ σ’ : ;

Decoding Lua: Formal Semantics for the Developer and the Semanticist

54%

Semantics

Semantics of programs

evaluation contexts

E ::= [] | if E then s else s end
| local x = E in s end |
| x = E | E binop e | v binop E

embedding relations using evaluation contexts

e →e e′

σ : E [[e]] 7→ σ : E [[e′]]
s →s s ′

σ : E [[s]] 7→ σ : E [[s ′]]

σ : s →s σ σ′ : s ′

σ : E [[s]] 7→ σ′ : E [[s ′]]

Decoding Lua: Formal Semantics for the Developer and the Semanticist

58%

Semantics

Built-in services

- Abstracts the details of the semantics of a service into an interpretation
function (δ):

l ∈ {type, assert, error, pcall, select, ...}
$builtIn l (v 1, ..., vn) →builtIn δ(l, v 1, ..., vn)

- Our def. of execution environment: global variables bound with wrapper
procedures of a $builtIn form:

type = function (v)
return $builtIn type(v)
end

Decoding Lua: Formal Semantics for the Developer and the Semanticist

63%

Semantics

Metatables

An ordinary Lua table that defines the behaviour of a given value under
certain special operations:

1 local t = {}
2 print (t) >> table: 0x68d7f0
3 print (next(t)) >> nil
4 t() >> attempt to call local ’ t ’ (a table value)
5 setmetatable(t , { call = function () print (” Callable !”) end})
6 print (t) >> table: 0x68d7f0
7 print (next(t)) >> nil
8 t() >> Callable!

Useful to develop DSLs.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

67%

Semantics

Metatables

Formalization of the mechanism:
- The special operation is tagged:

δ(type, v1) 6= “function”

σ : v1 (v2, ...) →funcall σ : L v1 (v2, ...) MWrngFC

- The metatable mechanism solves the situation:

v3 = indexmetatable(v1, “ call”, σ)
v3 /∈ {nil, false}

σ : L v1 (v2, ...) MWrngFC →meta σ : v3(v1, v2, ...)

Decoding Lua: Formal Semantics for the Developer and the Semanticist

71%

Semantics

Some of the features formalized:
- Every type of Lua value, except coroutines and userdata.
- Metatables.
- Identity of closures.
- Dynamic execution of source code.
- Error handling.
- Services of the standard library: basic functions and services from the

libraries math, tables and string.

Features left:
- Coroutines and userdata.
- GC and weak tables.
- goto and repeat statement.
- Remaining standard library’s services.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

75%

Mechanization

Decoding Lua: Formal Semantics for the Developer and the Semanticist

79%

The mechanization.

Implemented using PLT Redex.

Tested against Lua 5.2’s test suite:
File Features tested Coverage

calls.lua functions and calls 77.83%
closure.lua closures 48.5%

constructs.lua syntax and 63.18%
short-circuit opts.

events.lua metatables 90.4%
locals.lua local variables 62.3%

and environments
math.lua numbers and 82.2%

math lib
nextvar.lua tables, next, and for 53.24%

sort.lua (parts of) table 24.1%
library

vararg.lua vararg 100%

Next step: testing against libraries written in pure Lua.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

83%

The mechanization.

What’s left from the test suite:
- Language features not covered by our formalization (mentioned later).
- Tests of implementation details of the interpreter and not the language’s

semantics.

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests.

Mechanization available at github.com/Mallku2/lua-redex-model.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

github.com/Mallku2/lua-redex-model

88%

Future work

Decoding Lua: Formal Semantics for the Developer and the Semanticist

92%

Future work

Strengthen the possibilities of static analysis
- Weak references (wr): don’t prevent the data they point to from being

garbage collected.
- Lua introduces wr by means of weak tables: Lua’s tables whose elements

are wr.

1 local t = {} >> New table...
2 setmetatable(t , { mode = ”v”}) >> ...whose values are
3 >> referred by wr.

- wr are a way of interfacing with the GC: it opens the possibility of writing
programs with GC dependent behaviour.

Decoding Lua: Formal Semantics for the Developer and the Semanticist

96%

Future work

Strengthen the possibilities of static analysis

1 local t = {}
2 setmetatable(t , { mode = ”v”})
3 t [‘‘ foo ’’] = {} >> Just one ref. to this value : a wr.

4 local i = 0
5 while t [‘‘ foo ’’] do >> GC will delete the value t [‘‘ foo ’’]
6 print (i)
7 i = i + 1
8 end

˜$ lua wt.lua
0
.
.
.
391

˜$ lua wt.lua
0
.
.
.
337



Donelly et. al., “Formal Semantics
of Weak References”

Decoding Lua: Formal Semantics for the Developer and the Semanticist

96%

Future work

Strengthen the possibilities of static analysis

1 local t = {}
2 setmetatable(t , { mode = ”v”})
3 t [‘‘ foo ’’] = {} >> Just one ref. to this value : a wr.
4 local i = 0
5 while t [‘‘ foo ’’] do >> GC will delete the value t [‘‘ foo ’’]
6 print (i)
7 i = i + 1
8 end

˜$ lua wt.lua
0
.
.
.
391

˜$ lua wt.lua
0
.
.
.
337



Donelly et. al., “Formal Semantics
of Weak References”

Decoding Lua: Formal Semantics for the Developer and the Semanticist

96%

Future work

Strengthen the possibilities of static analysis

1 local t = {}
2 setmetatable(t , { mode = ”v”})
3 t [‘‘ foo ’’] = {} >> Just one ref. to this value : a wr.
4 local i = 0
5 while t [‘‘ foo ’’] do >> GC will delete the value t [‘‘ foo ’’]
6 print (i)
7 i = i + 1
8 end

˜$ lua wt.lua
0
.
.
.
391

˜$ lua wt.lua
0
.
.
.
337



Donelly et. al., “Formal Semantics
of Weak References”

Decoding Lua: Formal Semantics for the Developer and the Semanticist

96%

Future work

Strengthen the possibilities of static analysis

1 local t = {}
2 setmetatable(t , { mode = ”v”})
3 t [‘‘ foo ’’] = {} >> Just one ref. to this value : a wr.
4 local i = 0
5 while t [‘‘ foo ’’] do >> GC will delete the value t [‘‘ foo ’’]
6 print (i)
7 i = i + 1
8 end

˜$ lua wt.lua
0
.
.
.
391

˜$ lua wt.lua
0
.
.
.
337



Donelly et. al., “Formal Semantics
of Weak References”

Decoding Lua: Formal Semantics for the Developer and the Semanticist

100%

Future work

Add missing features:
- goto (replace evaluation contexts by program contexts5).
- Coroutines6.
- GC and weak tables (in progress).
- Remaining services of the standard library.

Check desired properties on a proof assistant: PLT Redex → Coq.

Enjoy it:
- Recognise GC-safe Lua programs.

5R. Krebbers and F. Wiedijk. Separation logic for non-local control flow and block scope
variables. In FOSSACS’13, 2013

6A. L. Moura and R. Ierusalimschy. Revisiting coroutines. TOPLAS, 31(2):6:1–6:31, February
2009

Decoding Lua: Formal Semantics for the Developer and the Semanticist

