Decoding Lua: Formal Semantics for the Developer and the

Semanticist

Mallku Soldevila!, Beta Ziliani®, Bruno Silvestre?, Daniel Fridlender® and
Fabio Mascarenhas*

LFAMAF/UNC and CONICET, 2INF/UFG, 3FAMAF/UNC, *DCC/UFRJ

24 Qctober 2017

@\(‘q \anguag,

About Lua.

Why do we need a formal semantics of Lua?
@ The Semantics.
@ The mechanization.

o Future work.

0
8 %
Decodi ua: Formal Semantics for the Developer and the Semanticist

About Lua

0
13 %
Decodi ua: Formal Semantics for the Developer and the Semanticist

o Extension programming language.
- Good data-description facilities.
- Small language, small implementation.
- Should be extensible.
- Clear and simple syntax.
- No need for mechanisms for programming-in-the-large.

o Concretely:
- Procedural programming with data-description facilities.

- Features for fast development: dynamic typing, automatic memory
management.

- Metaprogramming mechanisms: modification of values’ behaviour under
special circumstances.

0
17 %
Decodi ua: Formal Semantics for the Developer and the Semanticist

\anguag,
9 Qe
& .

R
<
&

Prog.

. the

@ Projects using Lua:
- Heavily used in the video game industry: mobile games, “AAA” games and

game engines.
- Other scriptable software: Adobe Photoshop Lightroom, LuaTex, VLC

media player, Wireshark, ...

- Look at www.lua.org/uses.html.

21%

Decoding Formal Semantics for the Developer and the Semanticist

www.lua.org/uses.html

Why do we need a formalized semantics of Lua?

- Developers of tools for code analysis and
language extensions.

- Lua programmers.

0
25%
Decoding Lua: Formal Semantics for the Developer and the Semanticist

Why do we need a formalized semantics of Lua?

Developers of tools for code analysis and language extensions
@ Tools for code analysis:
- Luacheck!

- Lua Inspect?

- More on lua-users.org/wiki/ProgramAnalysis.

o Language extensions
- Ravi?

- Typed Lua*

@ Formal proofs of soundness, strengthen the possibilities of static analysis
(e.g., weak tables).

1h1:tps ://github.com/mpeterv/luacheck
Zhttp://lua-users.org/wiki/Lualnspect
3http://ravilang.github.io/
4A. M. Maidl, F. Mascarenhas, and R. lerusalimschy. A formalization of Typed Lua. In DLS
'15, 2015. 29 %

lua-users.org/wiki/ProgramAnalysis
https://github.com/mpeterv/luacheck
http://lua-users.org/wiki/LuaInspect

Why do we need a formalized semantics of Lua?

Lua programmers

o From Ays, S5, Ax: it's plausible to give a formal semantics for real
programming languages, using (mostly) just common mathematical
knowledge.

@ They even provide a lightweight mechanization.
@ Developers could benefit from it: concise formal description of the
semantics of the whole language (no core language approach required for

Lua).

@ The project can be benefited from having people of differente areas testing
it (JSCert).

0
33%
Decoding Lua: Formal Semantics for the Developer and the Semanticist

Semantics

- The model.

- Semantics of stateless constructions.
- Semantics of state.

- Semantics of programs.

- Built-in services.

- Metatables.

0
38%
Decoding Lua: Formal Semantics for the Developer and the Semanticist

Semantics

The model

@ Concepts from small-steps operational semantics and reduction semantics
with evaluation contexts.

- Small-step operational semantics: the execution model of state (to capture
the intuition of the developer).

- Reduction semantics with evaluation contexts: evaluation contexts and
their several applications (easiness of description of context-sensitive
semantics, modularity), environment using substitution function.

0
42 %
Decodin a: Formal Semantics for the Developer and the Semanticist

Semantics

Semantics of stateless constructions

syntax

su=if ethenselsesend | ;| ..
v == nil | true | false | ...
ex=v| eande| eore]| ..

relations between terms (computations)

v ¢ {nil, false} v € {nil, false}
if v then s; else s end —° s if v then s; else s end —° s,

op € {and, or}
vope —° d(op,v,e)

interpretation function

v ifv = falseV v = nil
o(and, v, e) = { e otherwise

<

if v # false Av # nil
otherwise

é(or, v,e) = {

(1)

0
46 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

mantics

Semantics of state

syntax

sui=..|localx=¢einsend | x=¢

computations

o =(r,v),o

o:local x =vinsend —°7 o' :s[x\r]

o' =ofr:=v]

1

ocir=v =% o':;

0
50 %
Decodi ua: Formal Semantics for the Developer and the Semanticist

Semantics

Semantics of programs

evaluation contexts

E ::= []| if E then s else s end
| local x =E in s end |
| x=E | E binop e | v binop E

embedding relations using evaluation contexts
e —»° ¢ s =5 s
o:E[e] — o:E[€] o:E[s] — o:E[s]

o:s =% ¢g':¢

o: E[s] — o :E[s]

0
54 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

Semantics

Built-in services

- Abstracts the details of the semantics of a service into an interpretation
function (9):

| € {type, assert, error, pcall, select, ...}

Sbuiltin | (vi, ..., va) =™ §(1, vi, ..., vn)

- Our def. of execution environment: global variables bound with wrapper
procedures of a $builtln form:

type = function (v)
return S$builtln type(v)
end

0
58 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

Semantics

Metatables

@ An ordinary Lua table that defines the behaviour of a given value under
certain special operations:

1local t = {}

2 print (t) >> table: 0x68d7f0

3 print (next(t)) >> nil

4t() >> attempt to call local 't’ (a table value)

5 setmetatable(t, { __call = function () print (" Callable!") end})
6 print (t) >> table: 0x68d7f0

7 print (next(t)) >> nil

st() >> Callable!

@ Useful to develop DSLs.

0
63 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

Semantics

Metatables
@ Formalization of the mechanism:
- The special operation is tagged:

d(type, v1) # “function”

oivy (v2,...) =@l o vy (va,...) Dwimgrc

- The metatable mechanism solves the situation:

v3 = indexmetatable(vy, “__call’, o)
v3 ¢ {nil, false}

o:(v1(va2,...) Dwmgrc =™ o :v3(vi,va,...)

0
67 %
Decodin a: Formal Semantics for the Developer and the Semanticist

Semantics

@ Some of the features formalized:
- Every type of Lua value, except coroutines and userdata.
- Metatables.
- ldentity of closures.
- Dynamic execution of source code.
- Error handling.
- Services of the standard library: basic functions and services from the
libraries math, tables and string.

o Features left:

- Coroutines and userdata.

- GC and weak tables.

- goto and repeat statement.

- Remaining standard library’'s services.

0
71 %
Decoding Formal Semantics for the Developer and the Semanticist

Mechanization

0
75 %
Decodi ua: Formal Semantics for the Developer and the Semanticist

The mechanization.

@ Implemented using PLT Redex.

o Tested against Lua 5.2's test suite:

File Features tested Coverage
calls.lua functions and calls 77.83%
closure.lua closures 48.5%
constructs.lua syntax and 63.18%
short-circuit opts.
events.lua metatables 90.4%
locals.lua local variables 62.3%
and environments
math.lua numbers and 82.2%
math lib
nextvar.lua tables, next, and for 53.24%
sort.lua (parts of) table 24.1%
library
vararg.lua vararg 100%

o Next step: testing against libraries written in pure Lua.

79 %

Decoding Lua: Formal Semantics for the Developer and the Semanticist

The mechanization.

@ What's left from the test suite:

- Language features not covered by our formalization (mentioned later).
- Tests of implementation details of the interpreter and not the language's
semantics.

@ Every line of code of the test suite that falls within the scope of this work
successfully passes the tests.

@ Mechanization available at github.com/Mallku2/lua-redex-model.

0
83 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

github.com/Mallku2/lua-redex-model

Future work

0
88 %
Decodi ua: Formal Semantics for the Developer and the Semanticist

@ Strengthen the possibilities of static analysis

- Weak references (wr): don’t prevent the data they point to from being
garbage collected.
- Lua introduces wr by means of weak tables: Lua’s tables whose elements

are wr.
1 local t = {} >> New table...

2 setmetatable(t, {_-mode ="v"}) >> ..whose values are
3 >> referred by wr.

- wr are a way of interfacing with the GC: it opens the possibility of writing
programs with GC dependent behaviour.

0
92 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

@ Strengthen the possibilities of static analysis

1local t = {}
2 setmetatable(t, {--mode ="Vv"})
3t[*foo"”] ={} >> Just one ref. to this value: a wr.

0
96 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

@ Strengthen the possibilities of static analysis

1local t = {}
2 setmetatable(t, {--mode ="Vv"})
3t[*foo"”] ={} >> Just one ref. to this value: a wr.

4local i =0

swhile t [“foo"] do >> GC will delete the value t [" foo "]
6 print(i)

7 i=i+1

g end

0
96 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

@ Strengthen the possibilities of static analysis

1local t = {}
2 setmetatable(t, {--mode ="Vv"})
3t[*foo"”] ={} >> Just one ref. to this value: a wr.

4local i =0

swhile t [“foo"] do >> GC will delete the value t [" foo "]
6 print(i)

7 i=i+1

g end

“$ lua wt.lua

0

301
“$ lua wt.lua
0

337 ,
96 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

@ Strengthen the possibilities of static analysis

1local t = {}
2 setmetatable(t, {--mode ="Vv"})
3t[*foo"”] ={} >> Just one ref. to this value: a wr.

4local i =0
swhile t [“foo"] do >> GC will delete the value t [" foo "]
6 print(i)
7 i=i+1
s end
“$ lua wt.lua
0
301
Donelly et. al., “Formal Semantics
“$ lua wt.lua of Weak References”
0
337

0
96 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

@ Add missing features:

- goto (replace evaluation contexts by program contexts®).
- Coroutines®.

- GC and weak tables (in progress).

- Remaining services of the standard library.

@ Check desired properties on a proof assistant: PLT Redex — Coq.

e Enjoy it:
- Recognise GC-safe Lua programs.

SR. Krebbers and F. Wiedijk. Separation logic for non-local control flow and block scope
variables. In FOSSACS’13, 2013

SA. L. Moura and R. lerusalimschy. Revisiting coroutines. TOPLAS, 31(2):6:1-6:31, February

0
2009 100 %
Decoding Lua: Formal Semantics for the Developer and the Semanticist

